Notch receptor expression in human brain arteriovenous malformations

نویسندگان

  • Sandra Hill-Felberg
  • Hope Hueizhi Wu
  • Steven A Toms
  • Amir R Dehdashti
چکیده

The roles of the Notch pathway proteins in normal adult vascular physiology and the pathogenesis of brain arteriovenous malformations are not well-understood. Notch 1 and 4 have been detected in human and mutant mice vascular malformations respectively. Although mutations in the human Notch 3 gene caused a genetic form of vascular stroke and dementia, its role in arteriovenous malformations development has been unknown. In this study, we performed immunohistochemistry screening on tissue microarrays containing eight surgically resected human brain arteriovenous malformations and 10 control surgical epilepsy samples. The tissue microarrays were evaluated for Notch 1-4 expression. We have found that compared to normal brain vascular tissue Notch-3 was dramatically increased in brain arteriovenous malformations. Similarly, Notch 4 labelling was also increased in vascular malformations and was confirmed by western blot analysis. Notch 2 was not detectable in any of the human vessels analysed. Using both immunohistochemistry on microarrays and western blot analysis, we have found that Notch-1 expression was detectable in control vessels, and discovered a significant decrease of Notch 1 expression in vascular malformations. We have demonstrated that Notch 3 and 4, and not Notch 1, were highly increased in human arteriovenous malformations. Our findings suggested that Notch 4, and more importantly, Notch 3, may play a role in the development and pathobiology of human arteriovenous malformations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notch-1 signalling is activated in brain arteriovenous malformations in humans.

A role for the Notch signalling pathway in the formation of arteriovenous malformations during development has been suggested. However, whether Notch signalling is involved in brain arteriovenous malformations in humans remains unclear. Here, we performed immunohistochemistry on surgically resected brain arteriovenous malformations and found that, compared with control brain vascular tissue, No...

متن کامل

Notch4 normalization reduces blood vessel size in arteriovenous malformations.

Abnormally enlarged blood vessels underlie many life-threatening disorders including arteriovenous (AV) malformations (AVMs). The core defect in AVMs is high-flow AV shunts, which connect arteries directly to veins, "stealing" blood from capillaries. Here, we studied mouse brain AV shunts caused by up-regulation of Notch signaling in endothelial cells (ECs) through transgenic expression of cons...

متن کامل

Context-specific interactions between Notch and ALK1 cannot explain ALK1-associated arteriovenous malformations.

AIMS Notch and activin receptor-like kinase 1 (ALK1) have been implicated in arterial specification, angiogenic tip/stalk cell differentiation, and development of arteriovenous malformations (AVMs), and ALK1 can cooperate with Notch to up-regulate expression of Notch target genes in cultured endothelial cells. These findings suggest that Notch and ALK1 might collaboratively program arterial ide...

متن کامل

Receptors of the Notch signaling pathway are associated with hemorrhage of brain arteriovenous malformations.

Brain arteriovenous malformation (bAVM) is currently one of the most common cerebral vascular diseases, which result in severe clinical outcomes. The Notch signaling pathway is involved in vasculogenesis and angiogenesis, as well as vascular remodeling and arteriovenous differentiation in multiple diseases. Although there are previous studies on the correlation between bAVM and the Notch signal...

متن کامل

Notch1 and 4 Signaling Responds to an Increasing Vascular Wall Shear Stress in a Rat Model of Arteriovenous Malformations

Notch signaling is suggested to promote the development and maintenance of cerebral arteriovenous malformations (AVMs), and an increasing wall shear stress (WSS) contributes to AVM rupture. Little is known about whether WSS impacts Notch signaling, which is important for understanding the angiogenesis of AVMs. WSS was measured in arteriovenous fistulas (AVF) surgically created in 96 rats at dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2015